A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions
نویسندگان
چکیده
Identification of three-dimensional (3D) interactions between regulatory elements across the genome is crucial to unravel the complex regulatory machinery that orchestrates proliferation and differentiation of cells. ChIA-PET is a novel method to identify such interactions, where physical contacts between regions bound by a specific protein are quantified using next-generation sequencing. However, determining the significance of the observed interaction frequencies in such datasets is challenging, and few methods have been proposed. Despite the fact that regions that are close in linear genomic distance have a much higher tendency to interact by chance, no methods to date are capable of taking such dependency into account. Here, we propose a statistical model taking into account the genomic distance relationship, as well as the general propensity of anchors to be involved in contacts overall. Using both real and simulated data, we show that the previously proposed statistical test, based on Fisher's exact test, leads to invalid results when data are dependent on genomic distance. We also evaluate our method on previously validated cell-line specific and constitutive 3D interactions, and show that relevant interactions are significant, while avoiding over-estimating the significance of short nearby interactions.
منابع مشابه
Statistical Models for Detecting Differential Chromatin Interactions Mediated by a Protein
Chromatin interactions mediated by a protein of interest are of great scientific interest. Recent studies show that protein-mediated chromatin interactions can have different intensities in different types of cells or in different developmental stages of a cell. Such differences can be associated with a disease or with the development of a cell. Thus, it is of great importance to detect protein...
متن کاملMICC: an R package for identifying chromatin interactions from ChIA-PET data
UNLABELLED ChIA-PET is rapidly emerging as an important experimental approach to detect chromatin long-range interactions at high resolution. Here, we present Model based Interaction Calling from ChIA-PET data (MICC), an easy-to-use R package to detect chromatin interactions from ChIA-PET sequencing data. By applying a Bayesian mixture model to systematically remove random ligation and random c...
متن کاملAn integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites an...
متن کاملA Bayesian mixture model for chromatin interaction data.
Chromatin interactions mediated by a particular protein are of interest for studying gene regulation, especially the regulation of genes that are associated with, or known to be causative of, a disease. A recent molecular technique, Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), that uses chromatin immunoprecipitation (ChIP) and high throughput paired-end sequencing, is...
متن کاملChIA-PET analysis of transcriptional chromatin interactions.
Long-range chromatin contacts between specific DNA regulatory elements play a pivotal role in gene expression regulation, and a global characterization of these interactions in the 3-dimensional (3D) chromatin structure is imperative in understanding signaling networks and cell states. Chromatin Interaction Analysis using Paired-End Tag sequencing (ChIA-PET) is a method which converts functiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014